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Polariton-polariton scattering phenomena in organic strongly coupled microcavities have been theoretically
assessed on the basis of the kinematic interaction of Frenkel excitons. Experiments have been focused on
resonant pumping at magic angle, as well established in inorganic quantum-well microcavities, but insofar no
experimental evidence of parametric amplification has been found. Here, we show that in J-aggregate-based
microcavities a peculiar polariton-polariton scattering process applies, i.e., the scattering of two resonantly
pumped polaritons toward a polariton of lower energy and a localized excitation of the exciton reservoir. This
process, because of the localized nature of the final state, is not limited by momentum conservation, and we
show that in a high-quality factor microcavity it could be exploited to setup resonant pumping experiments not
requiring a magic angle configuration.
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I. INTRODUCTION

Strong coupling in solid-state microcavities �MCs�, based
on inorganic quantum wells, has been extensively studied.1,2

In such structures Wannier excitons and photon cavity modes
are mixed in coherent light-matter excitations, called polari-
tons. The strong-coupling regime is signaled by the appear-
ance of two anticrossing dispersion branches, i.e., the lower
polariton �LP� branch and the upper polariton branch, whose
minimal energy separation is called the Rabi splitting. Early
stage experiments were characterized by the presence of a
bottleneck effect in polariton thermalization.3,4 More re-
cently, the success in turning on polariton-polariton scatter-
ing �PPS� opened up the way to a number of interesting
phenomena, such as parametric processes5 and polariton
condensation.6,7

On the other hand organic strongly coupled MCs have
been developed since 1998,8 employing different kinds of
optically active organic layers, among which the cyanine dye
J-aggregate films are probably the most typical. Organic ma-
terials possess Frenkel excitons, instead of Wannier ones,
with large binding energy and oscillator strength. Because of
this, organic MCs allow obtaining values of the Rabi split-
ting up to 300 meV �Ref. 9� and offer the possibility of easily
observing polaritons at room temperature.10 Electrolumines-
cence was demonstrated in a J-aggregate strongly coupled
microcavity light-emitting diode11 at room temperature. Pe-
culiar molecular phenomena, like the observation of strongly
coupled vibronic replicas has also been also demonstrated.12

A more detailed review about organic MCs can be found in
Refs. 13 and 14.

The nature of polariton in disordered organic MCs has
been addressed from the theoretical point of view,15–18 un-
derlying the coexistence of delocalized and partially local-
ized polaritons, together with a large number of uncoupled
excitons, acting as an excitonic reservoir �ER�. The mecha-
nism of polariton relaxation due to the interaction with mo-
lecular vibrations was discussed in Refs. 19 and 20, and
simulation of the radiative decay time of J-aggregate MCs

photoluminescence was presented in Ref. 21. The effect of
anisotropy in organic crystal was theoretically analyzed,22 as
well as the possible occurrence of nonlinear phenomena,23 as
observed in inorganic MCs, associated to regimes of high
polariton density.

The present experimental photoluminescence data of
J-aggregate MCs under nonresonant pumping24 have been
explained in terms of a relaxation bottleneck. An initial re-
laxation step leads to the accumulation of particles in the ER,
from which the relaxation is then induced by the emission/
absorption of quanta of localized vibrations.20,25 A different
model, but leading to similar conclusions, was developed in
Ref. 26 through the application of a quantum kinetic theory,
which describes the organic MC dynamics in a regime of
nonperturbative coupling of polaritons with resonant optical
vibrations.

Given the present stage of experimental evidences, a
semiclassical approach can be useful to understand the rel-
evance of phenomena like PPS and the chance in observing
parametric processes or even polariton condensation. In this
work we setup a minimal model in order to analyze the rel-
evance of exciton-exciton interactions in polariton relaxation
at high excitation densities. In particular, we focus on a con-
figuration, in which two resonantly pumped polaritons scat-
ter into a LP bottom �LPB� state and a higher energy ER
state, and estimate its efficiency via the Fermi’s golden rule.

II. MICROSCOPIC MECHANISM OF
POLARITON-POLARITON SCATTERING

In an organic strongly coupled microcavity the photon
cavity modes polarize the optically active molecules, giving
rise, also in presence of disorder, to almost delocalized ideal
exciton polaritons. We assume for simplicity two-level mol-
ecules, with resonance energy E0

ex, interacting with the first
MC photon mode, with energy dispersion

Ek
ph = �c0

�k�
2 + k2, �1�

where c0 is the light velocity in the medium, k� the confined
wave vector, k= �k�� the modulus of the wave vector in the
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MC plane. In the strong-coupling regime light-matter inter-
action leads to the formation of the polariton dispersion
curves

Ek =
Ek

ph + E0
ex

2
� ��2 + �Ek

ph − E0
ex�2 �2�

with � the Rabi splitting, which is a measure of the coupling
strength. A delocalized polariton wave function of wave vec-
tor k� can be described approximatively by the following op-
erator:

�k�
† = Ck

phck�
† + Ck

ex�
i

N
eık�r�i

�N
bi

† �3�

with ck�
† and bi

†, respectively, the photon and molecular exci-
ton operators, Ck

ex and Ck
ph given by the usual Hopefield

coefficients,1 N the number of molecules. We note that the
Hopefield coefficients, like the polariton dispersion curve,
depend only on the wave vector modulus k, rather than on
the actual wave vector k�. Exciton and photon components
satisfy �Ck

ex�2+ �Ck
ph�2=1 with

�Ck
ex�2 =

�2

�2 + �Ek − E0
ex�2 . �4�

The exciton-exciton interaction in organic microcavity is
due essentially to the Paulion character of molecular exci-
tons, which causes the saturation of their oscillator strength.
Al least for the purpose of the present work, the exciton-
exciton Hamiltonian can essentially be schematized as the
following:23,27

Hex-ex = ��
i

N

bi
+bi

+bibi. �5�

In organic microcavities ideal-like delocalized polaritons,
described by their usual upper and lower dispersion curves,
coexist together with localized excitations. These localized
excitations �I� have a finite extent, which guarantees their
orthogonality to the delocalized polaritons. We describe them
as

�I� = �
i

�i
�I��i� �6�

with �i
�I� giving the exciton component on the ith molecular

site and �i�=bi
†� 0�. Only a fraction on the order of 10−4 of the

excited states are delocalized polaritons while the remaining
part form a huge ER, quite similar to the bare film exciton
density of states �DOS�.15,20 The presence of the ER allows a
channel of polariton-polariton scattering, leading from two
initial lower branch ideal-like delocalized polaritons to a po-
lariton final state of lower energy and a final state in the
exciton reservoir, as shown in Fig. 1. The exploitation of this
process in resonant pumping experiments has no need of a
magic angle configuration, due to the localized nature of the
ER final state, which relaxes momentum-conservation rule.

We apply Fermi’s golden rule �see, however, the discus-
sion below� to compute the polariton-polariton scattering
rates and distinguish the processes where initial and final

states are delocalized polaritons �k� ,k��→q� ,q��� or where the
final states are instead a polariton and an ER localized state
�k� ,k��→q , I�. We will use the notation �k��=�k�

†�0�. The core
of the calculation of the polariton-polariton scattering rates
via Fermi’s golden rule is, for the first process, the element
of the interaction Hamiltonian �Eq. �5�� between initial states
�k�k��� and final two polariton states �q�q���

	q�q���Hex-ex�k�k��� = �
Ck

exCk�
exCq

exCq�
ex

N2 �
i

N

eı�q�+q��−k�−k���r�i �7�

with �k�� given by the polariton creation operator in Eq. �3�. If
we instead consider the second process with a final state
composed by a polariton and a reservoir exciton �q�I�, we
obtain

	q�I�Hex-ex�k�k��� = �
Ck

exCk�
exCq

ex

N3/2 �I �8�

with

�I = �
i

eı�q�−k�−k���r�i�i
�I�. �9�

This factor represents the overlap of three quasi-ideal po-
laritons and one localized exciton. For fully localized exci-
tations, which are described by �i

�I�=	i,I �i.e., �I�= �i��, ��I�
would be unitary. However, even if small, the states of the
exciton reservoir possess a finite extent. Then, it is conve-
nient to introduce the parameter �=�	��I�2� obtained by av-
eraging over the states of the ER. We numerically estimate �
for the case of a one-dimensional MC with the model de-
scribed in Ref. 16. All eigenstates of a strongly coupled mi-
crocavity are calculated in the presence of diagonal energetic
disorder on the exciton resonance with a standard deviation
of 30 meV. We then compute �, averaging over all the ER
states, obtaining the estimate �
10−1. It would be numeri-
cally much more demanding to estimate � for a two-
dimensional �2D� MC and, considering also the uncertainty
in the disorder characterization, in the following we will
adopt � as a free parameter of the model.

Now the scattering rates for the two processes, respec-
tively, read

K

E

q

k,k

i

ERLPPump

FIG. 1. �Color online� Sketch of a resonant pumping situation
which activates the polariton-polariton scattering process leading to
the population of final states on the LP bottom and on the ER.
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Wk�k��→q�q�� = W
�Cq�

ex�2

N
��

i

N

eı�q�+q��−k�−k���r�i�2

	�Ek�+Ek−Eq−Eq��
,

=WN�Cq�
ex�2	�q�+q��−k�−k���	�Ek�+Ek−Eq−Eq��

, �10�

and

Wk�k��→q�I = W��I�2	�Ek�+Ek−Eq−EI�
, �11�

where W= 2
�2

�

�Ck
exCk�

exCq
ex�2

N3 and 	�E� is the Dirac delta ensuring
energy conservation. The two processes mainly differ for the
fact that, while the former have to fulfill both momentum and
energy conservation, the latter only requires energy conser-
vation. This fact is qualitatively different with respect to the
polariton-polariton scattering processes typical of inorganic
microcavities. In particular, in Eq. �11� the vectorial nature of
k�, k��, and q� is immaterial, but only energy matters. There-
fore, a chosen k� can scatter with every polariton of wave-
vector modulus k�, ending up in every polariton of wave-
vector modulus q with the same probability.

Within first-order perturbation theory, if all conservation
laws are satisfied and taking into account that the number of
final states I in the ER is huge �
N� with respect to the
number of polariton states, the ratio of the two relaxation
channel rates would be given by �2. For the process involv-
ing localized states, perturbation theory is applicable, and we
have checked up to third order that the rate given by Eq. �11�
remains adequate. For the process involving delocalized
state, however, the Fermi’s golden rule is generally not suf-
ficient to calculate the scattering rate and, at least for pro-
cesses involving polaritons having small wave vectors, it can
be shown that the estimate given by Eq. �10� should also be
suppressed by a factor which numerically is typically of the
same order of �2.23,28

Depending on the pumping energy we can expect one or
the other of the two PPS processes to prevail. Magic angle
experiments, exploiting the first PPS process, have not been
successful till now in organic MCs. The main difficulty
seems related to the Rayleigh scattering of pumping light
entering the MC mirrors, which leads to a randomization of
the population inside the whole annular region k, resonant
with the pumping laser. In other terms, in amorphous organic
MCs, disorder easily induces a mixing between the degener-
ate states inside an annular region of the same k. On the other
hand, the second PPS process, not requiring momentum con-
servation, is totally unaffected by this issue. In particular, the
second process is active, only for energies on the upper half
of the LP branch spectral span, and, when we are not fulfill-
ing the magic angle configuration, it is expected to be pre-
dominant. For lower energies only the first PPS process re-
mains active. In the following, we will focus on the region
where the second PPS is active and, for simplicity, we will
ignore the first PPS. We cannot exclude a quantitative con-
tribution of the first PPS, but we are more interested in de-
scribing the qualitatively different features of the second PPS
relaxation channel.

III. RESONANT PUMPING

Let us imagine now a resonant pumping situation in
which the PPS in Eq. �11� could be exploited in order to
drive population at the bottom of the lower polariton branch.
The ER DOS for two-level molecules can be approximately
described by a Gaussian distribution: DER�EI�
= N

��2

e−�EI − E0

ex�2/2�2
, peaked on the naked exciton energy E0

ex,
with a standard deviation �, which describes the inhomoge-
neous broadening of the resonance. To satisfy energy conser-
vation we can pump population at the middle of the energy
span of the LP branch: in an annular region corresponding to
the wave-vector modulus k �see Fig. 1�. The PPS which leads
from 2 k polaritons, to a LP state of wave-vector modulus q,
near the LPB, and to the Ith exciton in the ER will therefore
result close to resonance.

We estimate the rate at which polariton-polariton scatter-
ing depopulates the k state by integrating Eq. �11�, over all
possible polariton q and exciton I final states

� dEq� dEID�Eq�DER�EI�W2k→q,I�Eq,EI� . �12�

We adopt effective-mass approximation for the LP bottom,
for which its DOS becomes

D�E� = mR2N/�
�2� �13�

with R the mean molecular distance and m / �
�2� the 2D
DOS for the bottom of the polariton branch. Here we disre-
gard the effect of the homogeneous width of polariton states
because a smoothening is already accounted by the energetic
distribution of the ER states. Performing the integration in
Eq. �12�, we are led to the following overall scattering rate
for the polariton-polariton process:

1

�p-p
=

W�2

N 1

2
+

1

2
erf�2Ek − E0

ex − ELP
bot

��2
�� �14�

with W
1.61016 s−1, estimated with the typical values of
m=10−5me, �=2 eV, R=20 nm, �CLPB

ex �2=0.1, and �Ck
ex�2

=0.5.
Now we introduce some notations that will be useful to

develop a numerical model for the resonant pumping simu-
lation. Let us call f �E� the population distribution function
over the LP branch while D�E� the full polariton DOS, there-
fore N�E�=D�E�f �E� corresponds to the polariton population
density over the LP branch. In the annular region k we will
find a population density N�Ek�, which could scatters with the
population density in k� �i.e., N�Ek��

�. The scattering events

taking places in a time unit are

N�Ek�N�Ek��
Wkk�→qID�Eq��1 + f �Eq��DER�EI�dEk,k�,q,I

4

with dEk,k�,q,i
4 =dEkdEk�dEqdEI. Note that we added the

Bosonic final-state stimulation for the polariton state q. To
satisfy particle conservation, the rate of this process should
correspond to the population derivatives
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dN�Eq�

dt
=

dN�EI
ex�

dt
= −

dN�Ek�

dt
= −

dN�Ek��

dt
.

We can now formulate a rate equation for the distribution
function as

d

dt
f �E� = − �Ef �E� + pE +� dEk�dEIdEk

�Pin
�E,EI,Ek,Ek�� − Pout

�Ek�,EI,Ek,E�� �15�

with

Pin
�E,EI,Ek,Ek�� = �1 + f �E��DER�EI�N�Ek�N�E��Wk,k�→q,I, �16�

Pout
�Ek�,EI,Ek,E� = D�E���1 + f �E���DER�EI�N�Ek�f �E�Wk,q→k�,I,

�17�

where �E=
�CE

ph�2

� is the polariton radiative decay rate and � the
photon confinement time of the MC. The system is driven by
the resonant pumping pE, from which follows that the overall
number of particle injected in the MC in the time unit is P
=�pED�E�dE. We note that being the vectorial nature of po-
laritons not important in the present process, there exists a
biunique relationship between the wave-vector modulus q
and energy E=Eq given by the LP dispersion curve �Eq. �2��,
which has cylindrical symmetry. Therefore a LP polariton
can either be identified by its energy E or by its wave vector
q. Other scattering processes such as scattering with emis-
sion and absorption of phonon are here neglected for sim-
plicity, assuming a regime in which PPS and radiative decay
are the only leading phenomena. This is consistent with a
resonant pumping situation in which a high polariton density
is driven on the PB branch, turning on PPS phenomena.

We numerically implemented the rate equations Eq. �16�
for the full LP branch with a time-dependent calculation of
f �E;t�. The time-dependent population density N�E�, for a mi-
crocavity with detuning of 80 meV and Rabi splitting of 100
meV, with �=300�−2 fs, is shown in Fig. 2 for a continuous
resonant pump p= P /N of �21010, �21011, and �21012, ex-
pressed as the total particle number injected in the MC for
second for molecular site. The three pictures well show the
transition from an “empty” regime, where the scattering to-
ward the bottom of the LP branch is negligible, to an “accu-
mulation” regime, where PPS is predominant over radiative

decay and the injected population is accumulated at the LP
bottom.

We simulated also the effect of a resonant pulsed pump of
Gaussian shapelike in Fig. 3, centered on t=1�−2 ps with
standard deviation of 300�−2 fs, corresponding to the photon
confinement time of the MC. Initially the k state of energy
about 1.96 eV is populated by the pulse, but when the polar-
iton density becomes sufficiently high PPS is activated and a
sudden population transfer takes place from the state k to the
LPB state q, corresponding to about 1.91 eV. From now on
the photon injected in the MC is directly led by PPS toward
the LP bottom where it accumulates while only a small part
of the population remains on the pumped states. Finally, after
the pumping pulse, the polariton population decays due to
photoluminescence emission.

0 2 4 6
k (µm

-1
)

1.92

1.95

1.98

E
(e

V
)

LP

FIG. 2. �Color online� Time-dependent population for a continuous pumping with rates of �21010, �21011, and �21012 particle for second
for site �respectively, from left to right�. The population on the spectral range of the LP is represented in a color plot, for time up to 5�−2 ps.
The picture on the right side represents the LP dispersion curve.

FIG. 3. �Color online� Polariton population following a pulsed
resonant pumping described by the filled Gaussian shape in the
lower picture. In the upper figure we show a color plot of the
population density on the LP branch as a function of time. In the
lower picture we show the time profile of the population corre-
sponding to the resonantly pumped state �k� and to the bottom state
of the LPB.
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IV. THREE STATES MODEL

In this section we derive an analytical model for the PPS
in resonant pumping conditions. As before, we will assume a
resonant pumping on the spectral region of the LP branch
intermediate at halfway point between the LPB and the ER,
generating polaritons k �Fig. 1�. With this choice of the reso-
nant pumping, due to energy conservation, the PPS final
states are one at the LPB and one in the ER. With the as-
sumption for the PPS to be the dominant process, the only
parts of the system effectively populated will be the reso-
nantly pumped region �k states� and the final states in the
exciton reservoir �r states� and the lower polariton bottom �b
states�. We model therefore the resonant pumping experi-
ment with a system of scattering rate equations for three
spectral regions represented by three states: b, k, and r. The
system of rate equations is the following:

d

dt
Nk = − �kNk − 2�1 +

Nb

a
�W�2Nk

2

N
+ P ,

d

dt
Nb = − �bNb + �1 +

Nb

a
�W�2Nk

2

N
,

d

dt
Nr = − �rNr + �1 +

Nb

a
�W�2Nk

2

N
�18�

with � the radiative �or nonradiative� decay rate for polariton
and ER, respectively, P the total number of particle injected
in the system in the time unit by resonant pumping, a an
effective number of different states populated at the LPB
spectral region. The rate of the PPS process � 1

�p-p

 W�2

N � is
calculated by Eq. �12�, obtaining Eq. �14�. a can be estimated
integrating the polariton DOS in the phase space �in energy�
near the LPB accessible to the PPS process �k ,k→q , I�

a =� dEq� dEID�Eq�
1

��2

e−�EI − E0

ex�2/2�2
	�2Ek−Eq−EI�

=
mR2

N�21

2
+

1

2
erf�2Ek − E0

ex − ELP
bot

��2
�� �19�

with ELP
bot=Ek=0 is the bottom of the LP dispersion curve. In

the presence of an important population density on the LPB
�Nb particle distributed among a states�, the polariton-
polariton process suffers Bosonic final-state stimulation with
an acceleration of a factor 1+

Nb

a . If the population at the
bottom is sufficiently high, a number of secondary-relaxation
processes may become active and the population of the bot-
tom LP branch can be further concentrated on few lowest
laying states. However, here we neglect this possibility, and
we make the pejorative assumption, in view of obtaining an
accumulation at the LPB, of a populated LPB states. In order
to keep the model analytical, we neglect also the return of
the ER population on the polariton states, which is also a
pejorative assumption. At this point, the last equation is im-
material and only the former two need to be simultaneously
solved in order to determines the population in the k and the
b regions.

We start from the steady-state condition

0 = − �knk − 2�1 +
nb

�
�W�2nk

2 + p , �20�

0 = − �bnb + �1 +
nb

�
�W�2nk

2, �21�

where nk�b�=Nk�b� /N is the density of population for site, i.e.,
density for an area R2, �=a /N the number of final bottom
states for site, and p the pumping rate for site. From the
second we obtain

�1 +
nb

�
�W�2nk

2 = �bnb

that can be substituted in the first one yielding

− �knk − 2�bnb + p = 0

and therefore

nk = r − tnb, �22�

where we define the ratios

r = p/�k,

s = �−2�b/W ,

t = 2�b/�k,

� = r/t ,

� = s/t2.

Substituting nk in Eq. �21� we are now reconducted to an
equation containing the only variable nb

− snb + �1 +
nb

�
��r − tnb�2 = 0.

After a simple manipulation we obtain the third-order equa-
tion

nb
3 + nb

2�� − 2�� + nb��2 − 2�� − ��� + ��2 = 0. �23�

We employ Cardano’s formulas to obtain an analytical
solution of Eq. �23�, and therefore the population at the
lower polariton bottom as a function of the pumping inten-
sity. In Fig. 4 we present the fraction of the excited popula-
tion nb /ntot in steady-state conditions as a function of the
pumping intensity, for a photon confinement time from
50�−2 to 450�−2 fs. We cut from the picture states corre-
sponding to a total density of excitation per site larger than
0.1, which is a generous stability limit for the sample. The
picture clearly indicates the transition between a regime of
negligible population on the LPB �empty regime� to a regime
of accumulation, in which almost the 100% of the excited
states are collected at the bottom of the LP branch.

Between the steady-state populations nb and nk we find
the following relation:
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�k
dnk

dp
+ 2�b

dnb

dp
− 1 = 0 �24�

from which we can clearly identify two limiting conditions
of empty and accumulation regimes. In the empty regime the
scattering toward the LP branch is negligible and a linear
relation links the pumped population nk with the pump term
p, which can be resumed by

dnk

dp 
 1
�k

and
dnb

dp 
0. In the ac-
cumulation regime instead the relaxation processes toward
the bottom states are predominant and an increase in the
pumping power leads to larger nb, i.e., the injected popula-
tion is accumulated at the LP bottom. Such regime is char-
acterized by

dnk

dp 
0 and
dnb

dp 
 1
2�b

. To more clearly mark such
transition we identify a threshold pumping value, for which
the conditions

dnk

dp



1

2�k
,

dnb

dp



1

4�b
�25�

are satisfied. In Fig. 5 we show the threshold defined by Eq.
�25�, as a function of the photon confinement time, for three
different values of the disorder parameter �.

V. CONCLUSION

We studied the polariton-polariton scattering in organic
microcavities at high excitation densities, emphasizing the
presence of a mechanism, originating in the coexistence of
delocalized polaritons with a reservoir of quasilocalized mo-
lecular excitons. This polariton-polariton scattering process
has the peculiarity of not requiring momentum conservation,
and thus only energy conservation have to be fulfilled.
Therefore, in principle, it can be observed without recurring
to the magic angle configuration, employed in inorganic mi-
crocavities. We theoretically analyzed, with a semiclassical
approach, the possibility of exploiting this scattering process
in a resonant pumping experiment, both with continuous and
pulsed resonant excitations. We described the transition be-
tween an empty pumping regime, where the process is inef-
fective, to an accumulation regime, where a large population
is induced at the lower polariton bottom. The numerical re-
sults and, in particular, this transition have also been ratio-
nalized in terms of an analytical three states model.
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FIG. 4. �Color online� Fraction of the population in the LP bot-
tom in steady-state conditions as a function of the resonant pumping
intensity for a microcavity with �=30 meV for different values of
the photon confinement time. As a stability limit, we cut away the
region in which the total population of the system exceeds the 10%
of the actual number of molecular aggregates.
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FIG. 5. �Color online� Threshold that marks the transition be-
tween the empty and the accumulation regimes, as explained in the
text by Eq. �25�, for a disorder strength of �=10, 20, and 30 meV.
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